Efficient Incremental Search for Moving Target Search
نویسندگان
چکیده
Incremental search algorithms reuse information from previous searches to speed up the current search and are thus often able to find shortest paths for series of similar search problems faster than by solving each search problem independently from scratch. However, they do poorly on moving target search problems, where both the start and goal cells change over time. In this paper, we thus develop Fringe-Retrieving A* (FRA*), an incremental version of A* that repeatedly finds shortest paths for moving target search in known gridworlds. We demonstrate experimentally that it runs up to one order of magnitude faster than a variety of state-of-the-art incremental search algorithms applied to moving target search in known gridworlds.
منابع مشابه
Moving target D* Lite
Incremental search algorithms, such as Generalized FringeRetrieving A* and D* Lite, reuse search trees from previous searches to speed up the current search and thus often find cost-minimal paths for series of similar search problems faster than by solving each search problem from scratch. However, existing incremental search algorithms have limitations. For example, D* Lite is slow on moving t...
متن کاملGeneralized Fringe-Retrieving A*: faster moving target search on state lattices
Moving target search is important for robotics applications where unmanned ground vehicles (UGVs) have to follow other friendly or hostile UGVs. Artificial intelligence researchers have recently used incremental search to speed up the computation of a simple strategy for the hunter. The fastest incremental search algorithm, Fringe-Retrieving A*, solves moving target search problems only on twod...
متن کاملIncremental ARA*: An Incremental Anytime Search Algorithm for Moving-Target Search
Moving-target search, where a hunter has to catch a moving target, is an important problem for video game developers. In our case, the hunter repeatedly moves towards the target and thus has to solve similar search problems repeatedly. We develop Incremental ARA* (I-ARA*) for this purpose, the first incremental anytime search algorithm for movingtarget search in known terrain. We provide an err...
متن کاملState Abstraction for Real-time Moving Target Pursuit: A Pilot Study
The pursuit of moving targets in real-time environments such as computer games and robotics presents several challenges to situated agents. A priori unknown state spaces and the need to interleave acting and planning limits the applicability of traditional search, learning, and adversarial game-tree search methods. In this paper we build on the previous idea of hierarchical state abstraction, s...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کامل